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SELF-SIMILAR PROBLEMS OF THE DYNAMIC BENDING OF INFINITE 

NONLINEARLY ELASTIC BEAMS 

V. P. Yastrebov UDC 624.07:534.1 

Obtaining the exact solutions of dynamic bending problems for beams whose material is 
not subject to Hooke's law, is fraught with great mathematical difficulties. Approximate 
methods are used in solving such problems. For instance, the dynamic bending of infinite 
nonlinearly elastic beams is investigated in [i] by using series expansions of the solution 
in a variable interval. According to [2, 3], in solving the problem the beam is replaced by 
a chain of stiff sections interconnected by hinges along the length, wherein elastic or 
plastic elements with characteristics averaged over the length of each section are concen- 
trated. 

In this paper an exact solution on the bending of physically nonlinear infinite beams 
subjected to concentrated effects is obtained. The beam material is subject to a power-law 
dependence between the curvature and bending moment. The property of self-similarity of the 
problem [4, 5] is used to obtain this solution. 

I. A homogeneous prismatic beam is considered, whose bending is described by the 
equation 

O~ ~ " mO~ ~ = q(x ,  t ) ,  (1.1) 

where x is a coordinate measured along the beam, t is the time, w is the deflection, M is the 
bending moment, m is the linear mass of the beam, and q(x, t) is the linear load. 

In order to be able to construct a self-similar solution in describing the dependence 
between the beam curvature and the bending moment, the simplest relationship containing the 
minimal number of dimensional quantities must be used. The power-law dependence [6] 

M ---- 7lifo( l#~w/Ox ~ l) ~ s ign  ( 0~o /0x~ ) ,  (1.2) 
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satisfies such a condition, where u is the exponent to be given, and Mo is a dimensional 

constant. The vertical lines denote the absolute value, while the symbol sign denotes the 

sign of the corresponding quantity. 

The self-similar solution of (i.i) and (1.2) is sought in the form 

= w,t% (D; (1 .3)  

M = M , t ~  (~), ( l .4)  

where ~, 6 are still unknown exponents, w~, M, are dimensional factors, 
dimensionless functions of the dimensionless variable ~. 

In the self-similar solution the variable ~ has the form [4] 

and ~ (~), @(g) are 

= x/(2btq, (1.5) 

where ~ is an exponent, and b is a dimensional constant. The values of B and b are determined 
below. The factor 2 in the denominator is taken for convenience in the subsequent manipu- 

lations. 

In order to be able to construct a self-similar solution, the right side of (ioi) should 
be given in the form 

q = q , t ~ [  (~), (1 .6 )  

where q, is a dimensional constant , m is an exponent, and f(g) is a dimensionless function 
of the variable {. 

The values of (i.3), (1.4) are substituted into (i.i) and (1.2) and the dependence (1.6) 
is taken into account. The dependence of the variable g on t and x is taken into account in 
the differentiation. 

We obtain 

d- (~  - -  i )  ~(p] = q , M .  ~ (25)  ~ t~'-~+2~/(~); 
~2 = M o M .  1 [w, (2b)-=] ~ t"(~-2~)-~ l q)"l ~ sign (p". 

(1.7) 

(1.8) 

The primes in these equations indicate differentiation with respect to the variable {. 
Equations (1.7) and (1.8) should not contain t explicitly. Hence, all the exponents of t 
must be equated to zero 

--2--6+2~=0, ~(=--28)-6=0; ( ! . 9 )  

m--6 +22 --0 (l.10) 

If there is no transverse load q, then the three unknown exponents are just related by 
the two equations (1.9). The third equation can be obtained from an additional, say boundary, 
condition. 

Let us note that the initial and boundary conditions in the self-similar solution cannot 
be arbitrary, For instance, if q(x, t) = 0, then only one boundary condition, of independent 
dimensionality, can be taken. The remaining conditions should here have dimensionalities 
dependent on the dimensionalities of the quantities introduced earlier, or be zero. If q(x, 
t) # 0, than all the remaining conditions should have a dependent dimensionality or be zero. 
Appropriate examples are presented below. The reasoning elucidated predetermines the set of 
problems which can have self-similar solutions. Here, in particular, are problems on the 
bending of infinite beams excited kinematical!y or by forces acting in the section x = 0 
under zero initial conditions. Infinite beams have no characteristic linear dimension and 
are subject to zero boundary conditions at infinity, i.e., haveaminimalnumber of dimensional 
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constants, as is essential for the construction of a self-similar solution, 

2. Let us consider the bending of an infinite beam subjected to the force P applied in 
the section x = 0 

p = t),~ ~, (2.1) 

where P, is a dimensional factor, X is a given exponent. The distributed load q(x, t) in 
(I.i) is set equal to zero. 

Expressing the transverse force in terms of (2.1), we obtain 

OM/Ox = 0 . 5 P , t  ~, 

Let us substitute (1.4) here 

~'  (0) == 0 . 5 P , 2 b M ,  lt "~'-~+t~. 

The e x p r e s s i o n  o b t a i n e d  s h o u l d  n o t  depend  on t h e  t i m e .  
d e t e r m i n e  t h e  unknown e x p o n e n t s  

k - - a  +[$ = 0 .  

S o l v i n g  ( 1 . 9 )  and ( 2 . 3 )  j o i n t l y ,  we o b t a i n  

o~ = 2 [1 + 2t~ + ;~(t + ,~) ]('t + 31~)-*; 

= [21z - -  ( l  ,--- ~)~](1 - -  3,tt)-x; 

8 ---- 2tt(l + 2%)(t + 3,~) -*. 

Now the value of the coefficient b in (1.5) can be established. 

[b] = L T  -,~, 

(2.2) 

This yields a third condition to 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

The dimensionality 

( 2 . 7 )  

follows from (1.5), where L and T are, respectively, the notation for the dimensionalities of 
length and time. Let us form a combination of the dimensionalities mentioned from the 
dimensional parameters 

Mo, m, P*" (2.8) 

( ~,r Dbt--l~--P~l/(1-k3!~) 
b ~ k m  0"*  "~ ] (2.9) 

Their dimensionality is de- 

(2.10) 

Taking account of (2.5), we obtain 

Let us find the coefficients w, and M, in (1.3) and (1.4). 
termined by the formulas 

. o --2--6 
[w,l = L T  -~, [M,]  = K L ' T  , 

where K is the notation for the dimensionality of mass. Taking account of (2.4) and (2.6), 
combinations corresponding to these dimensionalities can be formed from the parameters of 
(2.8). The values of the numerical factors in w, and M, can be taken arbitrarily since they 
can be combined with the still unknown functions @($) and ~(~) or extracted from them. The 
value of the numerical factors is selected for convenience in the subsequent manipulations. 
Taking this into account, we take w, and M, in the form 

( 2 . 1 1 )  

( 2 . 1 2 )  

t ~ ,  4 { a/# s163 a(l+~)~ 1/[Ma+~)+2(l+bt)]" 

(MOP, m ! 

where a is determined from (2.4). 
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Substituting (2.11) and (2.12) into (1.7) and (1.8) and taking account of (1.9)~ we ob- 
tain the following system of equations 

~" + r l ~ ' c p  ' '  - ~(2o~ - ~ - t ) ~ '  + (o~ - ~)czq~] = o ,  

= stcp"[~ sign cp". (2,13) 

In this system r = 16, s = i, and the coefficients a and B are related to the given quantities 
% and ~ by the dependences (2.4) and (2.5). 

The system of equations obtained should be integrated under boundary conditions resulting 
from the boundary conditions of the problem under consideration. If the beam is infinite and 
subjected to a force in the section x = O, then the conditions 

,~ '=O,~'=t(for ~ = O ) , ~ O ,  gD'-~O(fo~i-+oo) (2~14) 

should be satisfied. 

The first condition results from the angle of rotation being zero under a force~ and 
the second from the expression (2.2) in which the value (2.9) and (2o12) have been substi- 
tuted. The third condition follows from the deflection and its derivative at infinity being 
zero. 

Numerical computations were performed on the digital computer Mir-2 for the bending of 
a beam subjected to the force (2.1) which varied according to the unit step law (% = 0) for 

= 1/3. The system of equations was integrated by the method of reduction to a Cauchy 
problem [7]. The method is that two conditions (for ~ and 9) are approximately given to- 
gether with the two known boundary conditions (2.14) on the left end of the beam (~ = 0) and 
the Cauchy problem is solved. The magnitude of the boundary conditions for ~ and ~ in the 
left end is corrected by means of the magnitude of non-closure of the solution in the right 
side of the beam (for sufficiently large values of ~). The computation is repeated until the 
function ~ and its derivative will be sufficiently small for sufficiently large values of $. 

Graphs of the functions 

= w (w,t~ '~)  -1,  ~ = M ( M , t ' ~ )  -~ 

are constructed for % = 0 and ~ = 1/3 (solid curves) characterizing the deflection and bending 
moment in a nonlinear beam in Fig. ! from the results of computations and analogous graphs 

q~ ~- W (w , tS '~ )  -1 ,  xp = M ( M , t l / ~ )  -1  

are also constructed for beams with linear elastic properties D = 1 (dashes)~ 

3. Let us consider the bending of an infinite beam under the kinematic condition 
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v = v , t  ~, (3.1) 

given in the section x = 0, where v is the velocity, v, is a dimensional constant, and v is 
the exponent to be given. 

As before, the solution is sought in the form of (1.3) and (1.4), the variable ~ has 
the structure (1.5). In this case (1.7) with right side zero and (1.8), as well as the 
relationship (1.9) connecting the exponents ~, 8, ~, p remain valid. The additional equation 
for the exponents is obtained from the condition (3.1) upon substitution of the derivative 
with respect to t from (1.3) therein. Equating the expression 

Ow/Ot = w , t  a -~  [r (~) - -  13~q~' (~)] 

for conditions (3.1) for ~ = 0, we obtain 

(0) = V, (W,~) -1  t v-~+l-  (3.2) 

The function ~ should not depend explicitly on the time in the self-similar solution, conse- 
quently 

v - - c z  + t = 0 .  (3.3) 

Equations (1.9) and (3.3) permit expressing all the exponents in terms of the known quan- 
tities ~ and ~: 

ct = v + 1, [~ = 0 . 5 [ 2 - - ( v  + t ) ( t -  ix)](l + ix) -1, 6 = 2 t , ~ ( l  + u )  -1. (3.4) 

The dimensional factors w,, M, and b should be expressed in terms of combinations of the 
dimensional parameters Mo, m, v,. Taking account of the dimensionality of (2.7), (2.10), and 
the relationships (3.4), these constants can be represented in the form of the following 
combinations 

b = ~,monZ v,  / ; ( 3 . 5 )  

= = (Morn v.  / �9 ( 3 . 6 )  W, U,, fief, ._p,. 2~I/(1+~) 

Upon substituting these values into (1.7) and (1.8), a system of equations is obtained 
that has the form of (2.13) in which r = 4, s = 4 -p, and the factors a and # are determined 
by (3.4). 

The system of equations was integrated by the method of reduction to a Cauchy problem 
[7] for ~ = 0 and p = 1/3 for the boundary conditions 

q~---- i ,  q/ ---- O ( for ~ = 0 ) ,  q~-+O, q / - ~ O ( f o r  ~---~-oo). (3.7) 

The first condition in (3.7) results from (3.2) upon substituting the values of w, (3.6) 
and ~ (3.4). The remaining conditions have. the same meaning as the analogous conditions in 
(2.14). 

Graphs of the functions 

= w@v*t)  -1 '  ~ = M M $ 1  (3.8) 

are constructed ~ = 0 and p = 1/3 (solid lines) and for the linear case p = 1 (dashes) in 
Fig. 2, from the results of computations. The quantities w, and ~ in (3.8) are determined 
by (3.6). 

4. An analysis of the results obtained was performed by comparing the solution of the 
nonlinear problem with the linear case of beam bending studied most (~ = i). The results of 
the linear solution can be found in [2, 8]. In this paper the numerical results of the linear 
problem have also been obtained by a numerical integration of (2.13) for p = 1 by means of 
a program composed for the general nonlinear case. The variables used above are inconvenient 
for the purposes of the investigation. For instance, the magnitude of the variable ~ in 
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(1.5) will depend on p in terms of the quantity (2.9) and will have a different value for the 
linear and nonlinear cases for all identical initial parameters (2.8) and fixed values of x 
and t. Moreover, it is difficult to compare stiffness characteristics of beams by using only 
the dependence (1.2), 

Henceforth, another mode of writing (1.2) will be used. A common point A, through 
which all the curves of power-law dependences of the form (lo2) corresponding to different 
values of p will pass, is given in Fig. 3 representing the dependence between the curvature 
and the moment M. Some bending moment M~ and curvature k (Fig. 3) will correspond to the 
point A. The presence of the common point A permits comparing the stiffnesses of beams for 
different values of p in identical ranges of variation of the bending moment and curvature. 
For example, a beam turns out to be stiffer for ~ = 1/3 in the range $2w/~x= ~ [0, k] than a 
linear beam (p = i). The reverse holds for #~w/Sz~ [k; ~ ]. 

The factor Mo is related to the quantities introduced by the formula 

M o ---- Mlk -~ = M[-~D "~, (4.1) 

where D is the bending stiffness of a beam with linear elastic properties, which equals the 
product of the absolute value�9 the normal elasticity and the moment of inertia of the 
transverse section. Using the quantities M,, D the variable 6 can be converted to the form 

= 0.5xlT1-~/(l+3~);  ( 4 . 2 )  

= 0 5x~al/(i+~)~J 1''~, (4.3) 

w h e r e  x i = xP,:M~; T I = P , M i  ~ ~fOmt; x2 = x-~s T2 v , ~ f i o - l t ;  a : v ,M~ i ~/Dm. F o r m u l a  ( 4 . 2 )  
corresponds to giving the force (2.1) for ~ = 0, and (4.3) corresponds to giving the velocity 
(3.1) for ~ = O. 

Let us reconstruct the graphs in Fig. 1 in new coordinate axes, by laying off the 
quantities 

3 3/2 - -  ~1 O.5X~T;* ''~, ~ ,  = wPSD ( 4 / , ~ )  }, ~ ,  = M (M~mI/2), ~, 

respectively, along the abscissa axis and the ordinate axes. 

In the new axes (Figs. 4 and 5), �9 the dashed lines corresponding to the linear case will be 
fixed while the solid curves for the nonlinear case will change in outline as a function of 
the time. The graphs indicate that the deflection under a force is less, and the bending 
moment greater in a nonlinear beam for a force effect in the initial period of motion (~ 
small). Deformations are hence propagated more intensively along the length of a nonlinear 
beam. As the time increases (T~ > 32), the pattern changes. For a nonlinear beam the de- 
formations become more local, ioe., the deflections under a force grow more rapidly and the 
domain enclosed by the substantial deformation# starts to broaden more slowly than in the 
linear case. The bending moment here grows more slowly than for a linear beam. Such a nature 
of the deformations can be explained by the fact that for the case p = 1/3 < ! under consider- 
ation, the stiffness of a nonlinear beam turns out to be greater for small deformations in 
the initial period than for a linear beam, and its stiffness drops substantially (see Fig. 
3) in subsequent times as the deformations grow. 

In analyzing the beam deformations for a velocity (3.1) varying as a unit step v = 0, 
given in the section x = 0, we note that the bending moment in the section x = 0 grows 
instantaneously to a certain value of any p, without changing subsequently. A further 
analysis could be performed by reworking the graphs in Fig. 2 as follows: the quantity 
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is plotted along the abscissa axis, and 

= q o ,  = (4.5) 

along the ordinate axes, where ~ and $ are functions constructed in Fig. 2. The coordinate 
is related to the old coordinate ~ in (4.3) by the dependence 

= ~a(~-.~)/(2 + 2)% ( 4 . 6 )  

It can be seen that in the linear ease (p = i), the new graphs of the quantities (4.5) would 
agree exactly with the dashed lines in Fig. 2. For the nonlinear beam the curve of %char- 
acterizing the deflection w in (4.5) in the new coordinate system has the same ordinates as 
the solid line in Fig. 2, however, the scale along the abscissa axis will be altered in con- 
formity with (4.6). The graph of the quantity ~a(~-1)l(~+~)~ characterizing the bending moment 
(4.5) will have a scale, altered in comparison to Fig. 2, along both the abscissa and ordi- 
nate axes for a nonlinear beam, where the nature of the scale change will depend to a greater 
or lesser degree on the magnitude of the dimensionless parameter a, which can be less or more 
than one. With the lapse of time not all the lines will change their shape in the coordinate 
systemunder consideration. 

The parameter a is proportional to the velocity. For high velocities the maximal value 
of the moment (for x = 0) may turn out "to be less in a nonlinear beam with p < 1 than in the 
linear case. For limited velocities the relationship between the maximal moments changes to 
the opposite for p < i. For the computed case of a nonlinear beam with p = 1/3, the boundary 
value of the parameter a at which the maximal moment in a nonlinear boam becomes equal to 
the moment in the linear case is determined by the quantity a = 1,31. 

Let us note that the graphs in Fig. 2 can be considere d graphs constructed in the coor- 

dinate axes (4.4) and (4.5) for a = i. 

Let us examine the possibility of constructing self-similar solutions of infinite beams 
for other kinds of boundary conditions. Together with the force (2.1), let the concentrated 

moment 

M = 2M~t% ( 4 . 7 )  

also act in the section x = 0, where M2 and • are, respectively, a given constant and an 
exponent. This moment is equilibrated by bending moments of the right and left sides of the 
beam from the section x = O. Equating half the moment (4.7) to (1.4), we obtain for ~ = 0 

~ = ]I2MF. lt • (4.8) 

from which ~--5 = 0. (4.9) 

Condition (4.8) replaces the first condition in (2-.14) in the solution of the problem. 
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The dimensionality of Ma agrees with the dimensionality of M,~ and can correspondingly 
be expressed in terms of the dimensionality of the quantities (2.8) introduced earlier. 
Therefore, a self-similar solution can be constructed by taking account of the dependence of 
the dimensionality of the parameter M= introduced, and in addition, by satisfying (4.9) 
which sets up a rigorous time dependence of the condition (4.7) in terms of the exponent ~ 
Other additional nonzero boundary conditions can be introduced analogously~ 

Let us consider the case q(x, t) # 0 in (i.I). A self-similar solution can be obtained 
for zero initial and boundary conditions. Nonzero boundary conditions which are time-de- 
pendent, can also be introduced in the section x = 0. This dependence is expressed by a 
power-law function whose exponent is predetermined and will be expressed in terms of given 
exponents ~ and m. The dimensionality of the constants (factors) in front of this power-law 
function will correspondingly depend on the dimensionalities of the quantities m, Mo, and q,. 

Therefore, using the properties of self-similarity permits investigation of a sufficient ~ 
ly broad set of questions on the dynamic bending of infinite beams from a nonlineariy elastic 
material. 
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